Experimental Evidence and Potential Immunotherapeutic Applications of Vaccine-Induced Antibodies Against 3S, a Highly Conserved Motif of gp41, in HIV-1-infected Patients Treated with Antiretroviral Therapy.

Christine Katlama¹⁻³, Odile Launay⁴, Shahin Gharakhanian^{5a}, Raphaël Ho Tsong Fang^{5b}, Brigitte Autran²⁻³,

Vincent Vieillard²⁻³, Joël Crouzet^{5b}, Robert Murphy⁶, Patrice Debré²⁻³

¹Inserm UMR S-943, AP-HP Pitié Salpêtrière, Paris, France; ²Inserm UMR S-945, AP-HP Pitié Salpêtrière, Paris, France ³Université Pierre et Marie Curie, Paris, France; ⁴AP-HP Cochin & Inserm CIC BT505 Paris, France; ^{5a}InnaVirVax, Cambridge Innovation Center, Cambridge MA, USA; ^{5b}InnaVirVax, Génopole, Evry, France; ⁶Northwestern University, Chicago IL, USA.

Background / Hypothesis

We hypothesize that 3S, a highly conserved motif of HIV-1 gp41, is a key target for an immunotherapeutic and immunoprotective vaccine (1-6). This peptide binds to gC1qR, leading to expression on CD4 of NKp44L, the natural ligand of NKp44 on activated NK cells, thus provoking CD4 apoptosis/depletion. Anti-3S antibodies prevent NKp44L expression and ensuing cytotoxic events (1).

Proof-of-concept in an non-human primate model for AIDS was carried out with nine cynomolgus macaques that were chronically infected with

Results [continued]

the SHIV_{163P3}. Four immunized with the 3S/gp41 peptide containing vaccine and five with the control vaccine. CD4+ T cell subsets, proliferation, cell activation and apoptosis were analyzed in the peripheral blood, the lymph nodes, spleen and rectum by flow cytometry. Anti-3S antibodies were shown to prevent NKp44L expression on CD4+ T cells in vivo preserving the peripheral CD4+ central memory T cells in 3S/gp41-vaccinated animals. Anti-3S antibodies also limited the NK cytotoxic activity against autologous CD4+ T cells, CD4 activation, proliferation and apoptosis in secondary lymphoid tissues (8). VAC-3S dose ranging, GLP toxicity and local tolerance assessments were performed in rats/mice (9).

3S-immunization mediated protection against apoptosis in peripheral blood (PB) and secondary lymphoid tissues. Exemplified by (A) Lower presence of annexin V on CD4+ T cells from 3S-vaccinated macaques (closed bars) than from controls (open bars).

Poster No. 145

3000 2000 CD4/mm³ 1000 10 UI 20 30 Weeks post-immunization 3S-immunized macaques *: p < 0.05; **: p > 0.01

3S immunization preserved central memory CD4+ T cells (TCM).

Exemplified by (B) Higher frequency of CD28+CD95+CD4+ TCM cells in

secondary lymphoid organs of 3S-vaccinated macaques (closed bars)

compared with controls (open bars).

3S immunization inhibited depletion and activation of CD4+ T cells. Exemplified by (C) higher absolute central memory CD4+ T cell counts from peripheral blood of 3S-vaccinated macaques (solid lines or closed bars) compared with controls (dotted lines or open bars).

3S immunization preserved CD4+ T cell counts. Exemplified by (D) Higher absolute cell counts (A) in the peripheral blood of 3S vaccinated macagues (solid lines) and controls (dotted lines)

Clinical observational data: anti-3S antibodies in 5 cohort studies (Total N=923 patients) correlated with a lack of CD4 decrease and/or HIV disease progression (4,6, and InnaVirVax / Inserm data on file). We have thus eveloped a novel immunotherapeutic vaccine (VAC-3S), comprised of 3S and commercially used carrier protein and adjuvant (7,10).

D

Figure 5: Total Plasma anti-3S Ab Titres (Arbitrary Units, A.U.) [Mean per dose over time – modified as treated (mAT) population]

Table 2: Immunological Outcome with VAC-3S Vaccination [mAT population]

Unit: cells /mm ³		Group Dose 1 0.1 μg; N=6		Group Dose 2 1 μg; N=6		Group Dose 3 10 μg; N=6		Group Placebo N=6	
		Mean	SD	Mean	SD	Mean	SD	Mean	SD
CD4 counts	Day 0	778	216	592	181	735	101	696	150
	Week 12	676	205	671	142	806	117	745	187
CD4 %	Day 0	37	5	36	6	35	7	37	4
	Week 12	37	4	33	1	35	9	35	5
CD8 counts	Day 0	815	282	728	262	896	294	730	275
	Week 12	702	289	983	291	1013	310	830	331
CD8 %	Day 0	38	6	44	8	41	8	39	7
	Week 12	37	5	48	9	42	9	37	9
CD4/CD8 ratio	Day 0	1.01	0.29	0.87	0.32	0.90	0.36	1.03	0.33
	Week 12	1.03	0.25	0.71	0.17	0.89	0.40	0.98	0.31
% NKp44L on CD4	Day 0	0.4	0.2	0.6	0.1	0.9	0.2	0.8	0.3
	Week 12	0.5	0.2	0.9	0,2	0.8	0.3	0.8	0.3
naive CD4	Day 0	39	14	25	9	31	12	37	3
	Week 12	35	9	28	10	31	10	39	6
Central Memory CD4	Day 0	28	8	30	9	28	5	30	5
	Week 12	26	6	31	9	28	4	28	9
Activation CD4	Day 0	11	3	19	5	18	7	16	7
(HLA-DR +CD4 +)	Week 12	14	4	21	5	13	6	14	6
Activation CD8	Day 0	8	7	12	7	12	3	16	14
(HLA-DR +CD38 +CD8 +)	Week 12	10	5	20	16	11	4	16	17

Methods

The First-Time-In-Human clinical trial is a prospective, randomized, placebo-controlled, double-blind dose-escalation study to assess safety, immunogenicity of 0.1, 1.0, 10 μg of VAC-3S with 3 IM immunizations, Week (W)0, W4, W8. Anti-3S antibodies were assessed by ELISA. Secondary endpoints include NKp44L expression, lymphocyte activation/differentiation.

Figure 3: Summary of VAC-3S Phase I/IIa Schedule

Primary objective : safety & tolerability

*No decimals included, values rounded up or down ** 1 patient was replaced

- Secondary objectives : immunogenicity, plasma anti-3S Ab titers, NKp44L expression on CD4⁺ T cells, CD4⁺, CD8⁺ T cell count and percentages, CD4/CD8 ratio, expression of markers of lymphocyte activation (CD25, CD38, HLA-DR) on CD45⁺CD3⁺CD4⁺, CD45⁺CD3⁺CD8⁺ and CD45⁺CD3⁻CD8⁺ cells, expression of markers of lymphocyte differentiation (CCR7, CD45RA) on CD45⁺CD3⁺CD4⁺ and CD45⁺CD3⁺CD3⁺CD8⁺ cells.
- Inclusion and non-inclusion criteria included but were not limited to the following : Patients on antiretroviral therapy (ART) ≥ 1 year, CD4 count at entry \geq 200 c/mm³, Nadir CD4 count \geq 100 c/mm³, no immunotherapy within the past 12 months, no vaccination within the past quarter

Results

Twenty-five virologically controlled HIV-1 pts (23 men) receiving ART with CD4 counts >200 cells/mm³ were randomized. Median (min-max) age was 47 years (32-54), CD4 710 cells/mm³ (311-1187), CD4 nadir 336 cells/mm³ (127-739), ART duration median 3.0 yrs (1.1-7.1), none had detectable HIV RNA at inclusion.

Table 1: Demographic Characteristics in VAC-3S Study Groups, Safety Population (patients who received at least one injection).

Characteristics mean values ±SD*	Group Dose 1 0.1 µg ● N=6	Group Dose 2 1 µg ● N=6	Group Dose 3 10 µg ● N=6	Placebo Group 0 μg ● N=7
Gender M/F	6/0	4/2	6/0	7/0**
Age, yrs	41 ± 8	48 ± 5	44 ±5	49 ± 7
Weight. kg	74 ± 12	77 ± 15	71 ± 7	76 ± 7
BMI	25 ± 5	26 ± 6	24 ± 1	24 ± 2
Enrolled / Completed Vaccination Schedule	6/6	6/6	6/6	6/6
CD4 count nadir at baseline, cells/mm ³	335 ± 60	283 ± 105	459 ± 229	332 ± 131

Table 3: VAC-3S Primary Endpoint: Safety & Tolerability.

	Dose 1	N=6	Dose 2	N=6	Dose 3	N=6	All Doses	N=18	Placebo	N=7	Overall	N=25
	Event	Subject	Event	Subject	Event	Subject	Event	Subject	Event	Subject	Event	Subject
NSAEs	23	6	36	6	25	6	84	18	39	7	123	25
Grade1	19	6	29	6	22	6	70	18	28	7	98	25
Grade2	4	2	7	4	3	2	14	8	9	5	23	13
Grade3	0	0	0	0	0	0	0	0	1	1	1	1
Grade4	0	0	0	0	0	0	0	0	1	1	1	1
Leading to corrective treatment	12	5	8	5	4	3	24	13	8	6	32	19
Leading to treatment discontinuation	0	0	0	0	0	0	0	0	1	1	1	1
Related	12	5	24	6	15	6	51	17	18	5	69	22
Expected local	7	4	18	5	10	6	35	15	12	4	47	19
Erythema	0	0	0	0	1	1	1	1	1	1	2	2
Induration	1	1	3	1	1	1	5	3	2	2	7	5
Pain	6	3	15	4	8	4	29	11	8	1	38	19
Expected systemic	3	2	3	2	4	1	10	5	3	2	13	7
Asthenia/Pyrexia	1	1	1	1	2	1	4	3	2	2	6	5
Myalgia	1	1	0	0	1	1	2	2	1	1	3	3
Headache	1	1	2	2	1	1	4	4	0	0	4	4
Other	2	1	3	3	1	1	6	5	3	2	9	7
Not related	11	5	12	5	10	3	33	13	21	6	54	19

Conclusion & Perspectives

VAC-3S vaccine has shown safety, evidence of immunogenicity at 10 μg x3 injections IM q4 weeks.

- Higher doses and booster revaccination are currently investigated.
- We hypothesize VAC-3S therapeutic effect would encompass the following clinical applications & benefits:

(1) Reconstruct immune homeostasis in patients with immunological failure receiving ART, i.e. patients who fail to achieve CD4 count > 350 c/mm³ or 500 c/mm³, or fail to increase CD4 count 50-100 c/mm³ following ART initiation. (2) In a functional cure multi-therapeutic approach: "shield" the immune system and allow response leading to a host-mediated control of HIV-replication in the absence of ART.

3 Potentialization of therapeutic vaccines generating CTL response against the HIV reservoirs by improving CD4 helper function through immune reconstitution.

References

- Vieillard V et al. NK cytotoxicity against CD4+ T cells during HIV-1 infection: A gp41 peptide induces the expression of an NKp44 ligand. Proc. Natl. Acad. Sci USA, 2005: 102:10981-10986.
- Vieillard V et al. Specific adapative humoral response against a gp41 motif inhibits CD4 T-cells sensitivity to NK lysis during HIV-1 infection. AIDS 2006; 20:1795-1804.
- Fauster-Bovendo H et al. HIV escape from natural killer cytotoxicity : nef inhibits NKp44L expression on CD4+ T cells. AIDS 2009; 23:1077–1087.
- Vieillard V et al.. Specific Phenotypic and Functional Features of Natural Killer Cells From HIV-Infected Long-Term Nonprogressors and HIV Controllers. J. Acquir. Immune Defic. Syndr. 2010; 53:564-573.
- Fausther-Bovendo H et al. 2010. HIV gp41 Engages gC1qR on CD4+ T Cells to Induce the Expression of an NK Ligand through the PIP3/H₂O₂ Pathway. PLoS Pathogens, 2010; 6:1-13.
- Vieillard V et al. Independent predictive value of anti-gp Ab for disease progression in untreated seroconverted HIV-1-infected patients. J Acq Immun Def Synd. 2012;61:403–405.
- Vieillard V et al. A new vaccine strategy against AIDS: A HIV gpg41 peptide immunization prevents NKp44L expression and CD4+ T cell depletion in SHIV-infected monkeys. Proc. Natl. Acad. Sci. USA, 2008; 105:2100

8) Vieillard V et al.. An HIVgp41 vaccine protects CD4 central memory T cells in SHIV-infected macaques. Vaccine 2012; 30: 6883– 6891

Ho Tsong Fang R et al. Dose-ranging for development of VAC-3S, a novel HIV immunotherapeutic vaccine. 8th Meeting of the French Society of Immunology (Club de Vaccinologie, SFI). Paris, France, 2013, January. 10) Katlama Cet al.. A randomized, placebo-controlled, double-blind, phase I/IIa dose escalation study of an HIV immunotherapeutic vaccine, VAC-3S, directed to the gp41 3S motif of HIV-1. 20th Confernce on

Retroviruses and Opportunistic Infections. Atlanta, Georgia, March 3-6, 2013.

The authors thank the patients and staff of the clinical services at Cochin, Pitié-Salpêtriere hospitals in Paris and staff of Immunology Laboratories, Pitié-Salpêtriere, Paris France. Drs H. Bodilis and R. Calin both co-investigators of the study. N. Baran, D. Desfontaine-Batéjat, M. Marcu of InnaVirVax who provided administrative or technical support or performed assays. B. Orlandini, Phinc co., Genopole, Evry for methodological support. CRO Services provided by **KEYRUS** Biopharma, Levallois-Perret, France.